Matrix geometry and coherent states

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry via Coherent States

It is shown how the coherent states permit to find different geometrical objects as the geodesics, the conjugate locus, the cut locus, the Calabi’s diastasis and its domain of definition, the Euler-Poincaré characteristic, the number of Borel-Morse cells, the Kodaira embedding theorem. 1 Coherent state manifold and coherent vector manifold In this talk the coherent states [] are presented as a ...

متن کامل

Multi-matrix Vector Coherent States

A class of vector coherent states is derived with multiple of matrices as vectors in a Hilbert space, where the Hilbert space is taken to be the tensor product of several other Hilbert spaces. As examples vector coherent states with multiple of quaternions and octonions are given. The resulting generalized oscillator algebra is briefly discussed. Further, vector coherent states for a tensored H...

متن کامل

Gazeau- Klouder Coherent states on a sphere

In this paper, we construct the Gazeau-Klauder coherent states of a two- dimensional harmonic oscillator on a sphere based on two equivalent approaches. First, we consider the oscillator on the sphere as a deformed (non-degenerate) one-dimensional oscillator. Second, the oscillator on the sphere is considered as the usual (degenerate) two--dimensional oscillator. Then, by investigating the quan...

متن کامل

Vector Coherent States with Matrix Moment Problems

Canonical coherent states can be written as infinite series in powers of a single complex number z and a positive integer ρ(m). The requirement that these states realize a resolution of the identity typically results in a moment problem, where the moments form the positive sequence of real numbers {ρ(m)}∞ m=0 . In this paper we obtain new classes of vector coherent states by simultaneously repl...

متن کامل

Fractals, coherent states and self-similarity induced noncommutative geometry∗

The self-similarity properties of fractals are studied in the framework of the theory of entire analytical functions and the q-deformed algebra of coherent states. Self-similar structures are related to dissipation and to noncommutative geometry in the plane. The examples of the Koch curve and logarithmic spiral are considered in detail. It is suggested that the dynamical formation of fractals ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2015

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.92.046009